Page 99 - Math Grade 12 (Advance)
P. 99

PROEUS DARA
                                               p
                                   0          A                                        X

                  n.  dj  x(t)  ctl13'glti5fn~1:Hl5  P  ~w9qb~ru:tbHli t  tSHtru~s&sm~~H'159mfd


                     ~61  P  ~x'(t)  '1
                      "'  I
                     tt::hrutru~EtSH~Sb a  tsmt?'i"QlS  x'(t)  =a  tL:.ib\5  x'(t)  ctltL:.i1t~&s  x(t)
                       ~     ,                  M  dx
                     M~filJ x  (t)  =a  ffiuMHMaw1  -  =a
                                                   dt
                     3  ~                                                   ~     dx
                     tw~J?lru1Sl13'glti5m x(t)  Qh~ru:tnru t  t?l1_!i~n:tHLnflti5M~fil~  -d  =a
                                              1                U                   f
                    dx        o~                   o          ~     o    "    ~
                     dt  =a  Sl'\j  dx = adt  tthti5JnffibtnLfilrutrnH~mb 2  tSM'efil~

                     t?'i"QlS  : J dx  = J adt

                    x(t)  = at+ c








                     t?'i'i.:flS  x(t)  = at+ c

                     r;tir;sir;nru  t  = o ttfiru P  'i:flSu'glru  2m  mtg'iifirn  o  'i:flssrum  t  = o,  x  = 2

                     &Slgtfi"QlS  x(O)  = a(O)+c  ttnru  x(O)  = 2  tSlg  c  = 2
                                                                         dx
                                                                  •  eJ
                                             Ql
                                                        Ql
                                                    ':t
                                                                                        Q)
                                                                "
                                                             Ql
                     L:.imsg  x(t)  = at+2  ctlumti5~ti5t8M~fil~~tdab&MJb15 -d  =a  nbn~rul
                     u                       .,   1.1                      t     '1
                                   ""
                    (t=O,x=2)  ttit=3  tSUx(3)=3a+2'1
                 "  M~fila x'(t)  =a  t'UlirtlM~filJ~td~b~MJb15rutnti9 1  ~L:.ib\5'i:f1S91Jb~r;gj
                    dy  = f(x)
                    dx
                 ..  Hsr:m@  x(t)  = at+c  t'Ulimm~ru9t9i&sM~fil~~r;nHHM~ru x'(t)  =a
                      1                          6V   u                   t.l
                          cr                 ~      ':t   e»        t::.'l}         ~~
                 "HS?'i~S x(t)  = at+2  ctlm~ti5~ti5tSM~filanbn~rul (t=O,  x=2)  tu11Gl
                      I                      N   1.1         «
                                                              I
                  m~rutltMMtSM~fil~~td~b~M~b\5rutnti9 1  ffl~b\5n~rult~~ x(O)  = 2
                    ""                         t.l                9   9
                  ~mJutr:fUUU1IDN1§m~~tnftH'NJru'i:fiEH~~ci ~~ =  f(x)

                 "  MHMa  dy  = f(x)  ctl  dy  = f(x)dx
                           dx
                 "~nffibtnLfilrnH~mbna: Jdy=  f!Cx)dx  t{y=  fJ(x)dx+c,  cctl~~sr;tl~






            94
   94   95   96   97   98   99   100   101   102   103   104