Page 107 - Math Grade 11 (Basic)
P. 107

PROEUS DARA


          3.2  ~HUn :tMitlHutlffii  sinx  =  a
                                       .,.         J2
                            ti:JlgLWltiHt51:3fil~  sinx  =  - '1
                                                    2
                t!=ltll:'Htl  sin~ = f  M~filHfltHt5Hft5~  sinx  = sin~  '1  ~m2g M~fil~'Hl2tH~rur!J

                   Jt               Jt                    Jt            3:n:
               x =   + 2k:n:  ,  x  =  :n:-  +21m  ,  k E  Z   ~ x =   + 2k:n:   x  =   + 2k:n:  (k E Z)  '1
                   4                4                     4             4



                                   ~                   QJ          I   0
                - filb'lHlffl  lal  >I M'i:3fila  sinx  =a  msm'i:3rutumg1r:l15u22  xER:  -1 s:  sinxs: 1  '1
                                                  ---b   ru     G    w



                                                                             y
                nl:Ubih~l:filru1'Hl'i~tf:Hl5'Hl2~~  0  Sb  A  dl
                    "   Li       Li        a
                "'  I                                                     B
           0       I".;)   QJ    ~   ----7    t:)
          uMul-lbl5t2'8  I:Ulti5  (OA,  OM)=  a  ti::lbl5
              I       "'
                      u
          sino.=  OQ  =a  (i::lum21bM)  '1  'i§'nb~m~:go~                            M
                           u  u      61     tl"   ""'
          OQ  =  sin(rt-o.)  =a  ti::lbl5  :n:  a  r:tumn.H2~   x'                         X
                                              "      1                    0
                 -7
                OM')  '1  tl=lQ12
                   t{j  a Et: [ -1,  1]  M~fil~  sinx  = a                -1  B'
                                                                             y'
                - r;ti  a  =  1  15  sinx  =  l  1:2"HuiJhgnrubl..Jllt!:lbl5
                            "'"             "'   w·
                                            u
                   'Hl2uh'i~~r3 Mu  B  mm~ rui2 w~ m~ '1
                       1  Li    1          GV
                - r;ti  a= -1  15  sinx  = -1  ~:mguiJhgnrutt:ibl5'Hl2uhU~cir3Mu B'  dlm~ru
                              '!l..            c:t   w·          1        1          G\J
                                               u
                   !2hl~fil~ '1  ~m2g sinx=-1  ¢:>X=   ~+2k:n:, (kEZ)  '1

                   ttl  a E]  l,  l [  'Hl2  a  t~'iilrul=lfiQhut~l8  (  - ~'  ~ )  ti::l bl5  sin a= a= sinx  '1
                                                   1
                r;i:JlgLfl.flfjjfd~fil~  smx  =a  ft51:3l;Jbt5'2h  sinx  =  sina  '1  ffi'i:3bl5Qru1:  (1)  tl=lQ12  :


                  ~                      QJ   QJ   ~
                W'i:3fil~  sinx  = sin a  'Hl2ut1:3ti5m!=l  x  =  a+ 2k:n:  15  x  =  :n:  a+ 2k:n:   (k E Z)
                                          GV                  "'-
                         C)1                         QJ     I   ~   ~
                      I.  m  a= 0  r;mg  sinx  = 0  '1  m~rumMM'i:3fil~R X=  2k:n:  ,  (kEZ)  '1
                                   0~  u       Q!               t:J   0   0   C),)   c:»   eJ
                     2.  m1:3 rn n ru1 :1:3 r1 a 1:1 rn'Hls M 2M L:l u m  rn gum~:~1:3 V1 h n a hlm 1515' 21:3 me m g
                              9     1           1  1   u   q;   1   1      """(:1;   '-:l..   6".   c::s
                                                                               c<;
                                                             """'
                 '-h
                            ""
                                                   u<J
          1:1=1Hlutw,gLnflti5hl'i:3fila  sinv(x)  = sinu(x)  r:wrn  u(x)  8w  v(x)  dlH~l=l'i:32t2  x  '1
                sinv(x)=sinu(x)¢:>u(x)  =  v(x)+2krt  Sh  u(x)  =  :n:  v(x)+2k:n:,  (kEZ)  tt:lbl5



          102
   102   103   104   105   106   107   108   109   110   111   112