Page 190 - Math Grade 11 (Advance)
P. 190

PROEUS DARA









                      os                                               s
                  0          0   eJ                eJ     oC:\     0          QJ   2
               - tiiHH'iutitlltiSfHf:iill'i:fHHlb  a+bi  ~f:iill  a  Sb  b  tlltiSSLin '1  t'lflru  i  = -1
                   u   IIIII   u                                    IJ
                                                                  ""~.o
                                  "'
                                             ""'
                  0
                      02
                                                        el
               - tiSSnuti  a+bi  Sb  c+di  thlff'l  rugumtn  a=  c  Sw  b  =  d  '1
                   IJ   1<N                  ~..   I
                         0   02
               - drntintiSSnuti  (a+bi)+(c+di)  = (a+c)+i(b+d)
                      U   IJ   16V
                         0   02
               - drnf:intiSSnuti  (a+bi)-(c+di) = (a-c)+i(b-d)
                          u   16V
                          0   02
               - drur:iMtiSSnuti  (a+bi)(c+di)  = (ac-bd)+i(ad+bc)
                      1    IJ   16V
                  0   os      •':lo   0   os
               - tiSSnutil11hltStiSSnuti  z =  a+bi  fflbtf:hru  z =  a-bi  '1
                   \.1   16V   6V   \.1   IN
                      os             os
                  0           ':lo   0
               - tiSSnl.3udrutStiSSnuti  z  =  a+bi  fflbtf:hru  -z =  -a-bi  '1
                   \.1   1N   ,;   \.1   I""
                           I
                   .::»   0   os                                               r-z-:2
                                                       "
                                                  "
                                                              l.o
               - ttitf!i'i:flStiS Snuti z =  a+ bi  &Slg~~rnts z  fflwt!:hru  r  = lzl  = ,_Ja-+b- '1
                           \.1   IN
                                     os
                         ..   '?   0
               - rnnn.fl:'ij:arntsussnuti
                    9    u  1     \.1   '""
                                   0 s
                               0
                       Ql
                     • m z  thtiSSnuutS18  lzl  = lzl  = 1-zl
                                \.1   16V
                             ab  Zz  tllBSSROti  tS'Htf!iQ'lS  lzlz21  = jz  ~l·lzzl  ' lzll  = 81
                                        u   1  ""                           Z";   lz2l
                                                          lz1 + z2l s lzd + izzl
                 'i'!   el   ---?   "   0   0~              0   0   "   ~ ---?
               -  ~r:;g~  OM  th~tiiiltHStiSSnuti z  fflb  <p  tJl'ijfttitid~HS  (Ox,  OM)  <p  tUTit:tl
                  1           U         \.1   1GV           1  U   I
                  ffir:irut§~tsussfiou z  '1  t~'ij"'irf!in..nSl~  cp  trubin~tf:h8UMru1titl§M~m~:
                     1   ·     \.1   IN       ZJ      I        W            t.:.i   ~
                                                                u
                                   a      a
                         COS<p  =       =  -
                                Ja2+b2    r
                          .
                         sm<p  =   b    = - b
                                Ja2+b2    r
               - z  = r(coscp+isincp)  tUTit:tl9'D3~~tfiiM'i:flUitSU~S~~ti  z  = a+bi  '1
               - tU  Z(  = rl(cos<pl + isincpl)  sb z2  = r2(cos<p2 + isin<pz)  tal8tf!i01S
                     •  ~ =  ~[cos(cp -cp )+isin(cp -cp )]
                                       2
                                   1
                                                   2
                                                1
                      Zz   r2
                     •  zn  =  [r(coscp+isincp)t = rn(cosncp+isinncp)  1Jili  n  mu~sr:in1W9u '1
                 tf!iffiti91(g01S  (cos<p+isincp)n  =  cosncp+isinn<p  tUTit:tl~~'(jg~{h '1


                                                                                         185
   185   186   187   188   189   190   191   192   193   194   195